Linear Rate Convergence of the Alternating Direction Method of Multipliers for Convex Composite Programming*

نویسندگان

  • Deren Han
  • Defeng Sun
  • Liwei Zhang
چکیده

In this paper, we aim to prove the linear rate convergence of the alternating direction method of multipliers (ADMM) for solving linearly constrained convex composite optimization problems. Under a mild calmness condition, which holds automatically for convex composite piecewise linear-quadratic programming, we establish the global Q-linear rate of convergence for a general semi-proximal ADMM with the dual step-length being taken in (0, (1 + √ 5)/2). This semi-proximal ADMM, which covers the classic one, has the advantage to resolve the potentially non-solvability issue of the subproblems in the classic ADMM and possesses the abilities of handling the multi-block cases efficiently. We demonstrate the usefulness of the obtained results when applied to twoand multi-block convex quadratic (semidefinite) programming.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Convex Data Clustering Algorithm Based on Alternating Direction Method of Multipliers

Knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering  in which there is no need to  be peculiar about how to select initial values. Due to properly converting the task of optimization to an equivalent...

متن کامل

On the O(1/t) convergence rate of Eckstein and Bertsekas’s generalized alternating direction method of multipliers

This note shows the O(1/t) convergence rate of Eckstein and Bertsekas’s generalized alternating direction method of multipliers in the context of convex minimization with linear constraints.

متن کامل

Linear Rate Convergence of the Alternating Direction Method of Multipliers for Convex Composite Quadratic and Semi-Definite Programming

In this paper, we aim to provide a comprehensive analysis on the linear rate convergence of the alternating direction method of multipliers (ADMM) for solving linearly constrained convex composite optimization problems. Under a certain error bound condition, we establish the global linear rate of convergence for a more general semi-proximal ADMM with the dual steplength being restricted to be i...

متن کامل

An Accelerated Linearized Alternating Direction Method of Multipliers

We present a novel framework, namely AADMM, for acceleration of linearized alternating direction method of multipliers (ADMM). The basic idea of AADMM is to incorporate a multi-step acceleration scheme into linearized ADMM. We demonstrate that for solving a class of convex composite optimization with linear constraints, the rate of convergence of AADMM is better than that of linearized ADMM, in...

متن کامل

A symmetric version of the generalized alternating direction method of multipliers for two-block separable convex programming

This paper introduces a symmetric version of the generalized alternating direction method of multipliers for two-block separable convex programming with linear equality constraints, which inherits the superiorities of the classical alternating direction method of multipliers (ADMM), and which extends the feasible set of the relaxation factor α of the generalized ADMM to the infinite interval [F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016